Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Bioimpacts ; 12(2): 139-146, 2022.
Article in English | MEDLINE | ID: covidwho-1539100

ABSTRACT

Introduction: With the outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the interaction between the host and SARS-CoV-2 was widely studied. However, it is unclear whether and how SARS-CoV-2 infection affects lung microflora, which contribute to COVID-19 complications. Methods: Here, we analyzed the metatranscriptomic data of bronchoalveolar lavage fluid (BALF) of 19 COVID-19 patients and 23 healthy controls from 6 independent projects and detailed the active microbiota landscape in both healthy individuals and COVID-19 patients. Results: The infection of SARS-CoV-2 could deeply change the lung microbiota, evidenced by the α-diversity, ß-diversity, and species composition analysis based on bacterial microbiota and virome. Pathogens (e.g., Klebsiella oxytoca causing pneumonia as well), immunomodulatory probiotics (e.g., lactic acid bacteria and Faecalibacterium prausnitzii, a butyrate producer), and Tobacco mosaic virus (TMV) were enriched in the COVID-19 group, suggesting a severe microbiota dysbiosis. The significant correlation between Rothia mucilaginosa, TMV, and SARS-CoV-2 revealed drastic inflammatory battles between the host, SARS-CoV-2, and other microbes in the lungs. Notably, TMV only existed in the COVID-19 group, while human respirovirus 3 (HRV 3) only existed in the healthy group. Our study provides insights into the active microbiota in the lungs of COVID-19 patients and would contribute to the understanding of the infection mechanism of SARS-CoV-2 and the treatment of the disease and complications. Conclusion: SARS-COV-2 infection deeply altered the lung microbiota of COVID-19 patients. The enrichment of several other pathogens, immunomodulatory probiotics (lactic acid or butyrate producers), and TMV in the COVID-19 group suggests a complex and active lung microbiota disorder.

2.
Sci Rep ; 11(1): 7811, 2021 04 09.
Article in English | MEDLINE | ID: covidwho-1174701

ABSTRACT

The novel coronavirus pneumonia (COVID-19) outbreak that emerged in late 2019 has posed a severe threat to human health and social and economic development, and thus has become a major public health crisis affecting the world. The spread of COVID-19 in population and regions is a typical geographical process, which is worth discussing from the geographical perspective. This paper focuses on Shandong province, which has a high incidence, though the first Chinese confirmed case was reported from Hubei province. Based on the data of reported confirmed cases and the detailed information of cases collected manually, we used text analysis, mathematical statistics and spatial analysis to reveal the demographic characteristics of confirmed cases and the spatio-temporal evolution process of the epidemic, and to explore the comprehensive mechanism of epidemic evolution and prevention and control. The results show that: (1) the incidence rate of COVID-19 in Shandong is 0.76/100,000. The majority of confirmed cases are old and middle-aged people who are infected by the intra-province diffusion, followed by young and middle-aged people who are infected outside the province. (2) Up to February 5, the number of daily confirmed cases shows a trend of "rapid increase before slowing down", among which, the changes of age and gender are closely related to population migration, epidemic characteristics and intervention measures. (3) Affected by the regional economy and population, the spatial distribution of the confirmed cases is obviously unbalanced, with the cluster pattern of "high-low" and "low-high". (4) The evolution of the migration pattern, affected by the geographical location of Wuhan and Chinese traditional culture, is dominated by "cross-provincial" and "intra-provincial" direct flow, and generally shows the trend of "southwest → northeast". Finally, combined with the targeted countermeasures of "source-flow-sink", the comprehensive mechanism of COVID-19 epidemic evolution and prevention and control in Shandong is revealed. External and internal prevention and control measures are also figured out.


Subject(s)
COVID-19/epidemiology , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , COVID-19/prevention & control , Child , Child, Preschool , China/epidemiology , Disease Outbreaks , Female , Humans , Incidence , Infant , Male , Middle Aged , SARS-CoV-2/isolation & purification , Sex Factors , Spatio-Temporal Analysis , Young Adult
3.
Pathog Dis ; 78(4)2020 06 01.
Article in English | MEDLINE | ID: covidwho-646518

ABSTRACT

The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) around the world has led to a pandemic with high morbidity and mortality. However, there are no effective drugs to prevent and treat the disease. Transcriptome-based drug repositioning, identifying new indications for old drugs, is a powerful tool for drug development. Using bronchoalveolar lavage fluid transcriptome data of COVID-19 patients, we found that the endocytosis and lysosome pathways are highly involved in the disease and that the regulation of genes involved in neutrophil degranulation was disrupted, suggesting an intense battle between SARS-CoV-2 and humans. Furthermore, we implemented a coexpression drug repositioning analysis, cogena, and identified two antiviral drugs (saquinavir and ribavirin) and several other candidate drugs (such as dinoprost, dipivefrine, dexamethasone and (-)-isoprenaline). Notably, the two antiviral drugs have also previously been identified using molecular docking methods, and ribavirin is a recommended drug in the diagnosis and treatment protocol for COVID pneumonia (trial version 5-7) published by the National Health Commission of the P.R. of China. Our study demonstrates the value of the cogena-based drug repositioning method for emerging infectious diseases, improves our understanding of SARS-CoV-2-induced disease, and provides potential drugs for the prevention and treatment of COVID-19 pneumonia.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Drug Repositioning , Pneumonia, Viral/drug therapy , Ribavirin/pharmacology , Saquinavir/pharmacology , Bronchoalveolar Lavage Fluid/chemistry , COVID-19 , Cell Degranulation/immunology , Endocytosis/immunology , Gene Expression Profiling , Humans , Lysosomes/immunology , Molecular Docking Simulation , Neutrophil Activation/immunology , Pandemics , SARS-CoV-2 , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL